Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(50): 20634-20645, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37552617

RESUMO

We synthesized, thanks to the regiospecific N-functionalization using an orthoamide intermediate, two 1,4,7-triazacyclononane derivatives containing an acetate arm and either a methylpyridine or a picolinic acid group, respectively, Hnoapy and H2noapa, as new Ga3+ chelators for potential use in nuclear medicine. The corresponding Ga3+ complexes were synthesized and structurally characterized in solution by 1H and 13C NMR. The [Ga(noapy)]2+ complex appears to exist in solution as two diasteroisomeric pairs of enantiomers, as confirmed by density functional theory (DFT) calculations, while for [Ga(noapa)]+, a single species is present in solution. Solid-state investigations were possible for the [Ga(noapa)]+ complex, which crystallized from water as a pair of enantiomers. The average length of the N-Ga bonds of 2.090 Å is identical with that found for the [Ga(nota)] complex, showing that the presence of the picolinate arm does not hinder the coordination of the ligand to the metal ion. Protonation constants of noapy- and noapa2- were determined by potentiometric titrations, providing an overall basicity ∑log KiH (i = 1-4) that increases in the order noapy- < noapa2- < nota3- with increases in the negative charge of the ligand. Stability constants determined by pH-potentiometric titrations supplemented with 71Ga NMR data show that the stabilities of [Ga(noapy)]2+ and [Ga(noapa)]+ are lower compared to that of [Ga(nota)] but higher than those of other standards such as [Ga(aazta)]-. 67Ga radiolabeling studies were performed in order to demonstrate the potential of these chelators for 67/68Ga-based radiopharmaceuticals. The labelings of Hnoapy and H2noapa were nearly identical, outperforming H3nota. Stability studies were conducted in phosphate-buffered saline and in the presence of human serum transferrin, revealing no significant decomplexation of [67Ga][Ga(noapy)]2+ and [67Ga][Ga(noapa)]+ compared to [67Ga][Ga(nota)]. Finally, all complexes were found to be highly hydrophilic, with calculated log D7.4 values of -3.42 ± 0.05, -3.34 ± 0.04, and -3.00 ± 0.23 for Hnoapy, H2noapa, and H3nota, respectively, correlating with the charge of each complex and the electrostatic potentials obtained with DFT.


Assuntos
Quelantes , Ácidos Picolínicos , Humanos , Ligantes , Quelantes/química
2.
Chem Soc Rev ; 51(18): 7715-7731, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35942718

RESUMO

Medicinal inorganic chemistry is a burgeoning subfield of medicinal chemistry that focuses on the development of metal-based diagnostic and therapeutic agents. This tutorial review aims to provide an introductory primer, present a timely overview of recent discoveries and identify current challenges and opportunities of the field. Three specific areas of discovery are highlighted herein. The first part focuses on metal-based radiopharmaceuticals for diagnostic and therapeutic purposes and specific design criteria for the development of radiopharmaceuticals that combine fundamental aqueous coordination chemistry with elucidation of pharmacokinetics. The second part describes approaches to photodynamic therapy with metal complexes. Here, photophysical characterization, combined with the challenge of careful control of the chemical behavior and selective biological deposition of transition metals with significant off-target toxicity, is discussed. In the third part, we summarize emerging strategies to modulate enzyme inhibition with coordination chemistry, while also highlighting the utility of the unique properties of metal ions for the characterization of mechanisms of action of these emerging diagnostic and therapeutic agents.


Assuntos
Complexos de Coordenação , Domínio Catalítico , Química Inorgânica , Química Farmacêutica , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Metais/química , Compostos Radiofarmacêuticos/uso terapêutico
3.
Metallomics ; 14(6)2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35648482

RESUMO

Three new bifunctional copper chelators based on the 1,4,7-triazacyclononane (tacn) platform have been synthesized and conjugated to peptides. The first one is constituted of the tacn with two methylpyridinyl and one methylthiazolyl carboxylic acid pendant arms, while, in the second and third ones, the macrocycle is functionalized by three methylpyridinyl groups, with an additional hexynoic acid chain on a carbon of one or two pyridine rings. These three bifunctional chelators have been conjugated to the antagonist DPhe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 peptide for targeting the gastrin-releasing peptide receptor, which is overexpressed in prostate cancer. The resulting monomeric bioconjugates have shown their efficiency to be radiolabeled with ß+ emitter 64Cu, and the hydrophilicity and PC-3 cell internalization properties of these radiolabeled conjugates have been studied. PC-3 cell binding affinity of mono- and dimeric metal-free and natCu metallated conjugates have been evaluated by IC50 measurements. The results demonstrate the potential of these methylpyridinyl tacn derivatives for radiopharmaceutical applications.


Assuntos
Bombesina , Neoplasias da Próstata , Quelantes , Radioisótopos de Cobre , Humanos , Masculino , Peptídeos
4.
Bioconjug Chem ; 33(7): 1377-1392, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35709513

RESUMO

The 1,4,7-tris-(2-pyridinylmethyl)-1,4,7-triazacyclononane ligand (no3py) and its bifunctional analogue no3pyCOOK were synthesized to investigate their action toward zinc(II) depletion related to the apoptosis phenomenon in chronic lymphocytic leukemia (CLL) cells. no3py was used as the "free" ligand, while its "graftable" derivative was conjugated on a newly synthesized bifunctional sialoglycan, 6'-SL-NH2, selected to specifically bind CD22 biomarker expressed on the B-CLL cell surface. Both compounds were produced with good yields thanks to a Sonogashira coupling reaction and an orthoester function, respectively, for the chelator and the targeting moiety. The newly reported bioconjugate 6'-SL-no3py was then obtained through a peptidic coupling reaction. Biological in vitro studies of no3py and 6'-SL-no3py consisting of real-time detection of cell health (cytotoxicity and proliferation) and caspases 3/7 activation (crucial enzymes whose activation triggers cell death signaling pathways) have been investigated. First, Ramos, Daudi, and Raji B-cell lines, which present different sensitivity to zinc(II) content variation, were incubated with no3py and 6'-SL-no3py. Then, a videomicroscope allowed the real-time monitoring of the morphological changes leading to cell death from the detection of the cytotoxicity, the antiproliferative effect, and the caspasic activity. In terms of mechanism, the Zn2+ chelator cytotoxic effect of no3py has been evidenced by a culture medium ion supplementation study and by the decrease of intracellular fluorescence of Zn-specific fluorophore zinquin in the presence of no3py and 6'-SL-no3py chelators. Finally, flow cytometry analysis with classical Annexin V staining was conducted to detect no3py- and 6'-SL-no3py-induced apoptotic cell death in B-CLL cells. Time-course analysis, using the Incucyte Live-Cell Analysis System, demonstrated that no3py induced cell death in a time- and dose-dependent manner with variability across cell lines. 6'-SL-no3py exhibited the same dose-dependent trend as no3py, showing the efficiency of the targeting moiety. In both cases, the chelators depicted proliferation curves that were inversely correlated with kinetic death. Morphological changes specific to apoptosis and caspase 3/7 activation were observed for the three cell lines treated with no3py and 6'-SL-no3py, highlighting their role as apoptotic agents. A higher concentration of 6'-SL-no3py is needed to reach 50% of the B-CLL mortality, confirming a targeting of the chelator to the cell membrane. Overall, our results proved that the biological properties of the triazamacrocyclic chelator still remain even after addition of the targeting moiety. The free chelator as well as the bioconjugate constitute promising cytotoxic agents for CLL therapy through apoptosis induction.


Assuntos
Leucemia Linfocítica Crônica de Células B , Apoptose , Quelantes/farmacologia , Citotoxinas , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Ligantes , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...